
An Implementation of Open Core Protocol for the
On-Chip Bus

Ch.Suryanarayana, M.Vinodh kumar

Dept. of ECE, MVGR College of Engineering, Andhra Pradesh, India

Abstract— As more and more IP cores are integrated into an
SOC design, the communication flow between IP cores has
increased drastically and the efficiency of the on-chip bus has
become a dominant factor for the performance of a system.
The on-chip bus design can be divided into two parts, namely
the interface and the internal architecture of the bus. In this
paper a well-defined interface standard, the Open Core
Protocol (OCP), has adopted to design the internal bus
architecture. An efficient bus architecture to support most
advanced bus functionalities defined in OCP has been
developed. These functionalities include burst transactions,
lock transactions, pipelined transactions, and out-of-order
transactions. First model and design the on-chip bus with
transaction level modeling for the consideration of design
flexibility and fast simulation speed. Then implement the RTL
models of the bus for synthesis and gate-level simulation.
Experimental results show that the proposed TLM model is
quite efficient for the whole system simulation and the real
implementation can significantly save the communication
time.
Keywords — single transactions, burst transactions, lock
transactions, pipelined transactions, and out-of-order
transactions.

I. INTRODUCTION

The On-Chip bus plays a key role in the system-on-a-chip
(SoC) design by enabling the efficient integration of
heterogeneous system components such as CPUs, DSPs,
application- specific cores, memories, and custom logic.
 Recently, as the level of design complexity has become
higher, SoC designs require a system bus with high
bandwidth to perform multiple operations in parallel. To
solve the bandwidth problems, An efficient OCP protocol
has been developed.

An SOC chip usually contains a large number of IP cores
that communicate with each other through on-chip buses.
As the VLSI process technology continuously advances, the
frequency and the amount of the data communication
between IP cores increase substantially. As a result, the
ability of onchip buses to deal with the large amount of data
traffic becomes a dominant factor for the overall
performance. The design of on-chip buses can be divided
into two parts: bus interface and bus architecture. The bus
interface involves a set of interface signals and their
corresponding timing relationship, while the bus
architecture refers to the internal components of buses and
the interconnections among the IP cores. The widely
accepted on-chip bus, AMBA AHB, defines a set of bus
interface to facilitate basic (single) and burst read/write
transactions. AHB also defines the internal bus architecture,
which is mainly a shared bus composed of multiplexors.
The multiplexer-based bus architecture works well for a
design with a small number of IP cores. When the number

of integrated IP cores increases, the communication
between IP cores also increase and it becomes quite
frequent that two or more master IPs would request data
from different slaves at the same time.

Each channel involves a set of signals. AXI does not

restrict the internal bus architecture and leaves it to
designers. Thus designers are allowed to integrate two IP
cores with AXI by either connecting the wires directly or
invoking an in-house bus between them. The other bus
interface protocol is proposed by a non-profitable
organization, the Open Core Protocol – International
Partnership (OCP-IP). OCP is an interface (or socket)
aiming to standardize and thus simplify the system
integration problems. It facilitates system integration by
defining a set of concrete interface (I/O signals and the
handshaking protocol) which is independent of the bus
architecture.

Based on this interface IP core designers can concentrate
on designing the internal functionality of IP cores, bus
designers can emphasize on the internal bus architecture,
and system integrators can focus on the system issues such
as the requirement of the bandwidth and the whole system
architecture. In this way, system integration becomes much
more efficient. Most of the bus functionalities defined in
AXI and OCP are quite similar. The most conspicuous
difference between them is that AXI divides the address
channel into independent write address channel and read
address channel such that read and write transactions can be
processed simultaneously. However, the additional area of
the separated address channels is the penalty.

In this paper a high-performance on-chip bus design with
OCP as the bus interface has been proposed. OCP has
chosen, because it is open to the public and OCP-IP has
provided some free tools to verify this protocol. The
proposed bus architecture features crossbar/partial-crossbar
based interconnect and realizes most transactions defined in
OCP, including 1) single transactions, 2) burst transactions,
3) lock transactions, 4) pipelined transactions, and 5) out-
of-order transactions. In addition, the proposed bus is
flexible such that one can adjust the bus architecture
according to the system requirement.

 The remainder of this paper is organized as follows. The
various advanced functionalities of on-chip buses are
described in Section 2. Section 3 details the hardware
architecture of the proposed bus. Section 4 gives the
experimental results which show the efficiency on both
simulation speed and data communication. Conclusions are
then drawn in Section 5.

Ch.Suryanarayana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4275 - 4278

4275

II. ON CHIP BUS FUNCTIONALITIES

 The various bus functionalities includes
 Burst,
 lock,
 pipelined, and
 out-of-order transactions.

A. Burst transactions

The burst transactions allow the grouping of multiple
transactions that have a certain address relationship, and can
be classified into multi-request burst and single-request
burst according to how many times the addresses are issued.
Fig.1 shows the two types of burst read transactions. The
multi-request burst as defined in AHB is illustrated in
Fig.1(a) where the address information must be issued for
each command of a burst transaction (e.g., A11, A12, A13
and A14).This may cause some unnecessary overhead. In
the more advanced bus architecture, the single-request burst
transaction is supported. As shown in Fig.1(b), which is the
burst type defined in AXI, the address information is issued
only once for each burst transaction. In the proposed bus
design both burst transactions are supported such that IP
cores with various burst types can use the proposed on-chip
bus without changing their original burst behaviour.

(a) Multi-request burst (b) Single – request burst

Fig.1 Burst transactions

B. Lock transactions

Lock is a protection mechanism for masters that have low
bus priorities. Without this mechanism the read/write
transactions of masters with lower priority would be
interrupted whenever a higher-priority master issues a
request. Lock transactions prevent an arbiter from
performing arbitration and assure that the low priority
masters can complete its granted transaction without being
interrupted.

C. Pipelined transactions (outstanding transactions)

Fig. 2(a) and 2(b) show the difference between non-
pipelined and pipelined (also called outstanding in AXI)
read transactions. In Fig. 2(a), for a non-pipelined
transaction a read data must be returned after its
corresponding address is issued plus a period of latency.
For example, D21 is sent right after A21 is issued plus t.
For a pipelined transaction as shown in Fig. 2(b), this hard
link is not required. Thus A21 can be issued right after A11
is issued without waiting for the return of data requested by
A11 (i.e., D11-D14).

(a) Non-pipelined Transactions

(b) Pipelined Transactions

Fig. 2 Pipelined transactions.

D. Out-of-order transactions

The out-of-order transactions allow the return order of
responses to be different from the order of their requests.
These transactions can significantly improve the
communication efficiency of an SOC system containing IP
cores with various access latencies as illustrated in Fig. 3.
In Fig. 3(a) which does not allow out-of-order transactions,
the corresponding responses of A21 and A31 must be
returned after the response of A11. With the support of out-
of-order transactions as shown in Fig. 3(b), the response
with shorter access latency (D21, D22 and D31) can be
returned before those with longer latency (D11-D14) and
thus the transactions can be completed in much less cycles.

(a) Without out of order

(b) With out of order

Fig.3. Out-of-order transactions

III. ON-CHIP BUS DESIGN

The architecture of the proposed on-chip bus is illustrated
in Fig. 4, where an example with two masters and two
slaves is shown. A crossbar architecture is employed such
that more than one master can communicate with more than
one slave simultaneously. If not all masters require the
accessing paths to all slaves, partial crossbar architecture is
also allowed.

Basically OCP has the address is of 13bits, data is of 8bits,
control signal is of 3bits and burst is of integer type. The
8kbit memory (213 = 8192bits = 8kbits) is used in the slave
side in order to verify the protocol functionality. The
System will give the inputs to OCP Master during Write
operation and receive signals from OCP Slave during Read
operation. The main blocks of the proposed bus architecture
are described below.

Ch.Suryanarayana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4275 - 4278

4276

Fig.4 Block diagram of OCP bus architecture

A. Arbiter

In traditional shared bus architecture, resource contention
happens whenever more than one master requests the bus at
the same time. For a crossbar or partial crossbar
architecture, resource contention occurs when more than
one master is to access the same slave simultaneously. In
the proposed design each slave IP is associated with an
arbiter that determines which master can access the slave.
B. Decoder

Since more than one slave exists in the system, the
decoder decodes the address and decides which slave return
response to the target master. In addition, the proposed
decoder also checks whether the transaction address is
illegal or nonexistent and responses with an error message
if necessary.
C. Multiplexer

A multiplexer is used to solve the problem of resource
contention when more than one slave returns the responses
to the same master. It selects the response from the slave
that has the highest priority.

IV. RESULTS

The proposed design is coded in VHDL language and
simulated using Xilinx ISE tool. The simulated waveforms
for simple transactions, burst transactions, pipelined
transactions and out of order transactions are shown in
following figures..

Fig.5 Simple transaction

Fig.6 Burst transaction

Fig.7 Out of order Transaction

Fig.8 Pipelined Transaction

Ch.Suryanarayana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4275 - 4278

4277

V. CONCLUSION

This project work presents the OCP (Open Core Protocol)
design which acts as an interface between two different IP
cores. In this work, initially the investigation on the OCP is
carried out and the basic commands and its working are
identified based on which the signal flow diagram and the
specifications are developed for designing the OCP using
VHDL. Cores with OCP interfaces and OCP interconnect
systems enable true modular, plug-and-play integration.
The simulation result shows that the communication
between different IP cores using OCP is proper.Based on
the result obtained, the burst extension is seen to automate
the address generation. The initial address alone is provided
to the protocol.

REFERENCES
[1] I Advanced Microcontroller Bus Architecture (AMBA)

Specification Rev 2.0 & 3.0, http://www.arm.com.
[2] Open Core Protocol (OCP) Specification,

http://www.ocpip.org/home.
[3] Choi, J.-T. Kong, S.-K. Eo, “Fast and Accurate TransactionLevel

Modeling of an Extended AMBA2.0 Bus Architecture,” Design,
Automation, and Test in Europe, pages 138-139, 2005.

[4] Kim Y.-T., T. Kim, Y. Kim, C. Shin, E.-Y. Chung, K.-M.
[5] Lo C.-K. and R.-S. Tsay, “Automatic Generation of Cycle Accurate

and Cycle Count Accurate Transaction Level Bus Models from a
Formal Model,” Asia and South Pacific Design Automation
Conference, pages 558-563, 2009.

[6] Schirner.G and R. Domer, “Quantitative Analysis of Transaction
Level Models for the AMBA Bus,” Design, Automation, and Test in
Europe, 6 pages, 2006.

Ch.Suryanarayana et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 3 (3) , 2012,4275 - 4278

4278

