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Abstract— As more and more IP cores are integrated into an 
SOC design, the communication flow between IP cores has 
increased drastically and the efficiency of the on-chip bus has 
become a dominant factor for the performance of a system. 
The on-chip bus design can be divided into two parts, namely 
the interface and the internal architecture of the bus. In this 
paper a well-defined interface standard, the Open Core 
Protocol (OCP), has adopted to design the internal bus 
architecture. An efficient bus architecture to support most 
advanced bus functionalities defined in OCP has been 
developed. These functionalities include burst transactions, 
lock transactions, pipelined transactions, and out-of-order 
transactions. First model and design the on-chip bus with 
transaction level modeling for the consideration of design 
flexibility and fast simulation speed.  Then implement the RTL 
models of the bus for synthesis and gate-level simulation. 
Experimental results show that the proposed TLM model is 
quite efficient for the whole system simulation and the real 
implementation can significantly save the communication 
time. 
Keywords — single transactions, burst transactions,  lock 
transactions,  pipelined transactions, and  out-of-order 
transactions. 

I. INTRODUCTION 

The On-Chip bus plays a key role in the system-on-a-chip 
(SoC) design by enabling the efficient integration of 
heterogeneous system components such as CPUs, DSPs, 
application- specific cores, memories, and custom logic. 
   Recently, as the level of design complexity has become 
higher, SoC designs require a system bus with high 
bandwidth to perform multiple operations in parallel. To 
solve the bandwidth problems, An efficient OCP protocol 
has been developed. 

An SOC chip usually contains a large number of IP cores 
that communicate with each other through on-chip buses. 
As the VLSI process technology continuously advances, the 
frequency and the amount of the data communication 
between IP cores increase substantially. As a result, the 
ability of onchip buses to deal with the large amount of data 
traffic becomes a dominant factor for the overall 
performance. The design of on-chip buses can be divided 
into two parts: bus interface and bus architecture. The bus 
interface involves a set of interface signals and their 
corresponding timing relationship, while the bus 
architecture refers to the internal components of buses and 
the interconnections among the IP cores. The widely 
accepted on-chip bus, AMBA AHB, defines a set of bus 
interface to facilitate basic (single) and burst read/write 
transactions. AHB also defines the internal bus architecture, 
which is mainly a shared bus composed of multiplexors. 
The multiplexer-based bus architecture works well for a 
design with a small number of IP cores. When the number 

of integrated IP cores increases, the communication 
between IP cores also increase and it becomes quite 
frequent that two or more master IPs would request data 
from different slaves at the same time.  

 
Each channel involves a set of signals. AXI does not 

restrict the internal bus architecture and leaves it to 
designers. Thus designers are allowed to integrate two IP 
cores with AXI by either connecting the wires directly or 
invoking an in-house bus between them. The other bus 
interface protocol is proposed by a non-profitable 
organization, the Open Core Protocol – International 
Partnership (OCP-IP). OCP is an interface (or socket) 
aiming to standardize and thus simplify the system 
integration problems. It facilitates system integration by 
defining a set of concrete interface (I/O signals and the 
handshaking protocol) which is independent of the bus 
architecture.  

Based on this interface IP core designers can concentrate 
on designing the internal functionality of IP cores, bus 
designers can emphasize on the internal bus architecture, 
and system integrators can focus on the system issues such 
as the requirement of the bandwidth and the whole system 
architecture. In this way, system integration becomes much 
more efficient. Most of the bus functionalities defined in 
AXI and OCP are quite similar. The most conspicuous 
difference between them is that AXI divides the address 
channel into independent write address channel and read 
address channel such that read and write transactions can be 
processed simultaneously. However, the additional area of 
the separated address channels is the penalty.  

In this paper a high-performance on-chip bus design with 
OCP as the bus interface has been proposed. OCP has 
chosen, because it is open to the public and OCP-IP has 
provided some free tools to verify this protocol. The 
proposed bus architecture features crossbar/partial-crossbar 
based interconnect and realizes most transactions defined in 
OCP, including 1) single transactions, 2) burst transactions, 
3) lock transactions, 4) pipelined transactions, and 5) out-
of-order transactions. In addition, the proposed bus is 
flexible such that one can adjust the bus architecture 
according to the system requirement. 

 The remainder of this paper is organized as follows. The 
various advanced functionalities of on-chip buses are 
described in Section 2. Section 3 details the hardware 
architecture of the proposed bus. Section 4 gives the 
experimental results which show the efficiency on both 
simulation speed and data communication. Conclusions are 
then drawn in Section 5. 
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II. ON CHIP BUS FUNCTIONALITIES  

 The various bus functionalities includes 
 Burst,  
 lock, 
 pipelined, and  
 out-of-order transactions. 
 

A. Burst transactions 

The burst transactions allow the grouping of multiple 
transactions that have a certain address relationship, and can 
be classified into multi-request burst and single-request 
burst according to how many times the addresses are issued. 
Fig.1 shows the two types of burst read transactions. The 
multi-request burst as defined in AHB is illustrated in 
Fig.1(a) where the address information must be issued for 
each command of a burst transaction (e.g., A11, A12, A13 
and A14).This may cause some unnecessary overhead. In 
the more advanced bus architecture, the single-request burst 
transaction is supported. As shown in Fig.1(b), which is the 
burst type defined in AXI, the address information is issued 
only once for each burst transaction. In the proposed bus 
design both burst transactions are supported such that IP 
cores with various burst types can use the proposed on-chip 
bus without changing their original burst behaviour.  

 

 
(a) Multi-request burst             (b) Single – request burst 

Fig.1 Burst transactions 
 
B.  Lock transactions 

Lock is a protection mechanism for masters that have low 
bus priorities. Without this mechanism the read/write 
transactions of masters with lower priority would be 
interrupted whenever a higher-priority master issues a 
request. Lock transactions prevent an arbiter from 
performing arbitration and assure that the low priority 
masters can complete its granted transaction without being 
interrupted. 
 
C.  Pipelined transactions (outstanding transactions) 

Fig. 2(a) and 2(b) show the difference between non-
pipelined and pipelined (also called outstanding in AXI) 
read transactions. In Fig. 2(a), for a non-pipelined 
transaction a read data must be returned after its 
corresponding address is issued plus a period of latency. 
For example, D21 is sent right after A21 is issued plus t. 
For a pipelined transaction as shown in Fig. 2(b), this hard 
link is not required. Thus A21 can be issued right after A11 
is issued without waiting for the return of data requested by 
A11 (i.e., D11-D14).  

 
(a) Non-pipelined Transactions 

 

 

(b) Pipelined Transactions 

Fig. 2 Pipelined transactions. 

D. Out-of-order transactions 

The out-of-order transactions allow the return order of 
responses to be different from the order of their requests. 
These transactions can significantly improve the 
communication efficiency of an SOC system containing IP 
cores with various access latencies as illustrated in Fig. 3. 
In Fig. 3(a) which does not allow out-of-order transactions, 
the corresponding responses of A21 and A31 must be 
returned after the response of A11. With the support of out-
of-order transactions as shown in Fig. 3(b), the response 
with shorter access latency (D21, D22 and D31) can be 
returned before those with longer latency (D11-D14) and 
thus the transactions can be completed in much less cycles. 
 

 
(a) Without out of order 

 

 
(b) With out of order 

Fig.3. Out-of-order transactions 

III. ON-CHIP BUS DESIGN  

The architecture of the proposed on-chip bus is illustrated 
in Fig. 4, where an example with two masters and two 
slaves is shown. A crossbar architecture is employed such 
that more than one master can communicate with more than 
one slave simultaneously. If not all masters require the 
accessing paths to all slaves, partial crossbar architecture is 
also allowed. 

Basically OCP has the address is of 13bits, data is of 8bits, 
control signal is of 3bits and burst is of integer type. The 
8kbit memory (213 = 8192bits = 8kbits) is used in the slave 
side in order to verify the protocol functionality. The 
System will give the inputs to OCP Master during Write 
operation and receive signals from OCP Slave during Read 
operation. The main blocks of the proposed bus architecture 
are described below. 
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Fig.4 Block diagram of OCP bus architecture 

 
A. Arbiter 

In traditional shared bus architecture, resource contention 
happens whenever more than one master requests the bus at 
the same time. For a crossbar or partial crossbar 
architecture, resource contention occurs when more than 
one master is to access the same slave simultaneously. In 
the proposed design each slave IP is associated with an 
arbiter that determines which master can access the slave. 
B. Decoder 

Since more than one slave exists in the system, the 
decoder decodes the address and decides which slave return 
response to the target master. In addition, the proposed 
decoder also checks whether the transaction address is 
illegal or nonexistent and responses with an error message 
if necessary. 
C. Multiplexer 

A multiplexer is used to solve the problem of resource 
contention when more than one slave returns the responses 
to the same master. It selects the response from the slave 
that has the highest priority. 

IV. RESULTS 

The proposed design is coded in VHDL language and 
simulated using Xilinx ISE tool. The simulated waveforms 
for simple transactions, burst transactions, pipelined 
transactions and out of order transactions are shown in 
following figures.. 

 
Fig.5 Simple transaction 

 
Fig.6 Burst transaction 

 

 
Fig.7 Out of order Transaction 

 

 
Fig.8 Pipelined Transaction 
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V. CONCLUSION 

This project work presents the OCP (Open Core Protocol) 
design which acts as an interface between two different IP 
cores. In this work, initially the investigation on the OCP is 
carried out and the basic commands and its working are 
identified based on which the signal flow diagram and the 
specifications are developed for designing the OCP using 
VHDL. Cores with OCP interfaces and OCP interconnect 
systems enable true modular, plug-and-play integration. 
The simulation result shows that the communication 
between different IP cores using OCP is proper.Based on 
the result obtained, the burst extension is seen to automate 
the address generation. The initial address alone is provided 
to the protocol.  
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